Vbeta14(+) T cells mediate the vaccine-enhanced disease induced by immunization with respiratory syncytial virus (RSV) G glycoprotein but not with formalin-inactivated RSV.
نویسندگان
چکیده
Mice immunized with respiratory syncytial virus (RSV) G glycoprotein or with formalin-inactivated RSV (FI-RSV) exhibit severe disease following RSV challenge. This results in type 2 cytokine production and pulmonary eosinophilia, both hallmarks of vaccine-enhanced disease. RSV G-induced T-cell responses were shown to be restricted to CD4(+) T cells expressing Vbeta14 in the T-cell receptor (TCR), and the deletion of these T cells resulted in less severe disease. We therefore examined the role of Vbeta14(+) T cells in FI-RSV-induced disease. BALB/c mice were immunized with vaccinia virus expressing secreted RSV G (vvGs) or with FI-RSV. At the time of challenge with live RSV, mice were injected with antibody to the Vbeta14 component of the TCR. vvGs-immunized mice treated with anti-Vbeta14 had reduced cytokine levels in the lung. Eosinophil recruitment to the lung was also significantly reduced. In contrast, depletion of Vbeta14(+) T cells in FI-RSV-immunized mice had little impact on cytokine production or pulmonary eosinophilia. An analysis of TCR Vbeta chain usage confirmed a bias toward Vbeta14 expression on CD4(+) T cells from vvGs-immunized mice, whereas the CD4(+) T cells in FI-RSV-immunized mice expressed a diverse array of Vbeta chains. These data show that although FI-RSV and vvGs induce responses resulting in similar immunopathology, the T-cell repertoire mediating the response is different for each immunogen and suggest that the immune responses elicited by RSV G are not the basis for FI-RSV vaccine-enhanced disease.
منابع مشابه
CD8 T cells inhibit respiratory syncytial virus (RSV) vaccine-enhanced disease.
Vaccination of children with a formalin-inactivated (FI) respiratory syncytial virus (RSV) vaccine led to exacerbated disease including pulmonary eosinophilia following a natural RSV infection. Immunization of BALB/c mice with FI-RSV or a recombinant vaccinia virus (vv) expressing the RSV attachment (G) protein (vvG) results in a pulmonary Th2 response and eosinophilia after RSV challenge that ...
متن کاملDecrease in Formalin-Inactivated Respiratory Syncytial Virus (FI-RSV) Enhanced Disease with RSV G Glycoprotein Peptide Immunization in BALB/c Mice
Respiratory syncytial virus (RSV) is a high priority target for vaccine development. One concern in RSV vaccine development is that a non-live virus vaccine would predispose for enhanced disease similar to that seen with the formalin inactivated RSV (FI-RSV) vaccine. Since a mAb specific to RSV G protein can reduce pulmonary inflammation and eosinophilia seen after RSV infection of FI-RSV vacci...
متن کاملRSV Vaccine-Enhanced Disease Is Orchestrated by the Combined Actions of Distinct CD4 T Cell Subsets
There is no currently licensed vaccine for respiratory syncytial virus (RSV) despite being the leading cause of lower respiratory tract infections in children. Children previously immunized with a formalin-inactivated RSV (FI-RSV) vaccine exhibited enhanced respiratory disease following natural RSV infection. Subsequent studies in animal models have implicated roles for CD4 T cells, eosinophils...
متن کاملProtection against respiratory syncytial virus by inactivated influenza virus carrying a fusion protein neutralizing epitope in a chimeric hemagglutinin.
UNLABELLED A desirable vaccine against respiratory syncytial virus (RSV) should induce neutralizing antibodies without eliciting abnormal T cell responses to avoid vaccine-enhanced pathology. In an approach to deliver RSV neutralizing epitopes without RSV-specific T cell antigens, we genetically engineered chimeric influenza virus expressing RSV F262-276 neutralizing epitopes in the globular he...
متن کاملEnhanced disease and pulmonary eosinophilia associated with formalin-inactivated respiratory syncytial virus vaccination are linked to G glycoprotein CX3C-CX3CR1 interaction and expression of substance P.
Vaccination with formalin-inactivated respiratory syncytial virus (FI-RSV) vaccine or RSV G glycoprotein results in enhanced pulmonary disease after live RSV infection. Enhanced pulmonary disease is characterized by pulmonary eosinophilia and is associated with a substantial inflammatory response. We show that the absence of the G glycoprotein or G glycoprotein CX3C motif during FI-RSV vaccinat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of virology
دوره 78 16 شماره
صفحات -
تاریخ انتشار 2004